Online or onsite, instructor-led live Certnexus training courses demonstrate through hands-on practice how to implement Certnexus solutions for solving real-world problems.
Certnexus training is available as "online live training" or "onsite live training". Online live training (aka "remote live training") is carried out by way of an interactive, remote desktop. Pakistan onsite live Certnexus trainings can be carried out locally on customer premises or in NobleProg corporate training centers.
This course covers network defense and incident response methods, tactics, and procedures are taught in alignment with industry frameworks such as NIST 800-61 r.2 (Computer Security Incident Handling), US-CERT’s NCISP (National Cyber Incident Response Plan), and Presidential Policy Directive (PPD) 41 on Cyber Incident Coordination Policy. It is ideal for candidates who have been tasked with the responsibility of monitoring and detecting security incidents in information systems and networks, and for executing standardized responses to such incidents. The course introduces tools, tactics, and procedures to manage cybersecurity risks, identify various types of common threats, evaluate the organization's security, collect and analyze cybersecurity intelligence and remediate and report incidents as they occur. This course provides a comprehensive methodology for individuals responsible for defending the cybersecurity of their organization.
This course is designed to assist students in preparing for the CertNexus CyberSec First Responder (Exam CFR-310) certification examination. What you learn and practice in this course can be a significant part of your preparation. In addition, this course and subsequent certification (CFR-310) meets all requirements for personnel requiring DoD directive 8570.01-M position certification baselines:
• CSSP Analyst
• CSSP Infrastructure Support
• CSSP Incident Responder
• CSSP Auditor
Course Objectives: In this course, you will understand, assess and respond to security threats and operate a system and network security analysis platform. You will:
• Compare and contrast various threats and classify threat profile
• Explain the purpose and use of attack tools and technique
• Explain the purpose and use of post exploitation tools and tactic
• Explain the purpose and use of social engineering tactic
• Given a scenario, perform ongoing threat landscape research and use data to prepare for incident
• Explain the purpose and characteristics of various data source
• Given a scenario, use appropriate tools to analyze log
• Given a scenario, use regular expressions to parse log files and locate meaningful data
• Given a scenario, use Windows tools to analyze incidents
• Given a scenario, use Linux-based tools to analyze incidents
• Summarize methods and tools used for malware analysis
• Given a scenario, analyze common indicators of potential compromise
• Explain the importance of best practices in preparation for incident response
• Given a scenario, execute incident response process
• Explain the importance of concepts that are unique to forensic analysis
• Explain general mitigation methods and devices
Target Student: This course is designed primarily for cybersecurity practitioners preparing for or who currently perform job functions related to protecting information systems by ensuring their availability, integrity, authentication, confidentiality, and non-repudiation. It is ideal for those roles within federal contracting companies, and private sector firms who whose mission or strategic objectives require the execution of Defensive Cyber Operations (DCO) or DoD Information Network (DODIN) operation and incident handling. This course focuses on the knowledge, ability, and skills necessary to provide for the defense of those information systems in a cybersecurity context, including protection, detection, analysis, investigation, and response processes.
In addition, the course ensures that all members of an IT team—regardless of size, rank or budget— understand their role in the cyber defense, incident response, and incident handling process.
The Internet of Things (IoT) promises a wide range of benefits for industry, energy and utility companies, municipalities, healthcare, and consumers. Data can be collected in extraordinary volume and detail regarding almost anything worth measuring, such as public health and safety, the environment, industrial and agricultural production, energy, and utilities. New data analysis tools have been optimized for the massive amounts of data that IoT produces, enabling well-informed decisions to be made quickly.
But putting IoT systems into place can be a complicated proposition, and fraught with hazards. Solutions may involve devices and technologies from many different vendors, requiring a good understanding of software and hardware and strategies to integrate them, as well as the risks associated with security, privacy, and the safety of those whose working and living environments are managed by these systems.
IT professionals often have little or no experience working with embedded systems, sensor networks, actuators, real-time systems, and other components that are common to IoT, so this course provides a foundation for understanding how these components work with other systems that IT professionals typically have more experience working with—such as networks, cloud computing, and applications running on servers, desktop computers, and mobile devices.
In this course, students will learn general strategies for planning, designing, developing, implementing, and maintaining an IoT system through various case studies and by assembling and configuring an IoT device to work in a sensor network. Students will create an IoT device based on an ESP8266 microcontroller, implementing various common IoT features, such as analog and digital sensors, a web-based interface, MQTT messaging, and data encryption.
Course Objectives: In this course, you will learn how to apply Internet of Things technologies to solve real-world problems. You will:
• Plan an IoT implementation.
• Construct and program an IoT device.
• Communicate with an IoT device using wired and wireless connections.
• Process sensor input and control an actuator on an IoT device.
• Manage security, privacy, and safety risks on IoT projects.
• Manage an IoT prototyping and development project throughout the development lifecycle.
Target Student: This course is designed for IT professionals with baseline skills in computer hardware, software support, and development who want to learn how to design, develop, implement, operate, and manage Internet of Things devices and related systems. The student is interested in learning more about embedded systems, microcontroller programming, IoT security, and the development life cycle for IoT projects.
While students will gain hands-on experience assembling a prototype IoT device and using software development tools, these activities are closely guided, so previous experience in electronics assembly and programming are not required. This course prepares students for taking the CertNexus Certified Internet of Things (IoT) Practitioner (Exam ITP-110).